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Abstract Thermal frontal polymerization (TFP) is the process that converts mono-
mers into polymers by means of a spatially localized self-propagating thermal reaction
wave. Free radical frontal polymerization systems can suffer from a limited pot life,
i.e. the systems will spontaneously polymerize while remaining at ambient pressure
and temperature before they can be used. One way to avoid this undesirable spontane-
ous polymerization is by microencapsulating the monomer. The release of monomer
from its shell can be modeled as a temperature dependent or temperature independent
reaction; we consider both cases. Conditions are established which reduce the current
model to the standard FP model and extinction limits are determined by employing
an asymptotic analysis of the reaction zone in the limit as the reaction zone shrinks to
an interface.

Keywords Frontal polymerization · Mathematical modeling · Traveling wave ·
Encapsulated monomer

1 Introduction

Frontal polymerization (FP) is the process in which a spatially localized reaction zone
propagates through a mixture of monomer and initiator converting it into polymer. In
TFP, the polymerization wave propagates due to diffusion of heat released in exother-
mic chemical reactions. In the simplest case, a test tube filled with a monomer/ini-
tiator mixture is heated at one end causing primary radicals formed by the initiator
decomposition to react with monomer molecules thereby beginning the polymer chain.
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The chemical reactions that lengthen the polymer chain are exothermic. The heat
released by these reactions diffuse into adjacent layers of the reactant mixture and
initiate the reactions there. The process repeats, and in this way, a self-sustained poly-
merization wave propagates along the tube. Under appropriate conditions, the wave
propagates uniformly with constant velocity with unreacted monomer in its path and
polymer in its wake.

It is the apparent simplicity of FP which has made it an attractive way of synthe-
sizing polymeric materials. One advantage of FP is the ability to prepare materials
quickly and to vary the morphology in a controlled manner. Another advantage of FP
is that in energy savings. FP is an approach to polymer synthesis which exploits the
heat released by the chemical reactions. Therefore, no further energy input is needed
to sustain the wave, just the temporary heat source applied to start the reactions.

Frontal polymerization studies began in the former Soviet Union in 1972 by Che-
chilo et al. [1] to synthesize polymethyl methacrylate. This process was performed as a
polymerization analog to the Self—propagating High—temperature synthesis (SHS)
of materials in which combustion waves are used to make a wide range of ceramics
and intermetallic compounds. The experiments were carried out in high pressure con-
ditions (>3,000 atm) to suppress instabilities and monomer boiling [2,3]. It was found
that the front velocity increased with increasing initiator concentration and pressure.
Methyl methacrylate (MMA) as the monomer was used for many years in early studies
but extensive boiling at high temperatures made this monomer of limited use. The dis-
covery that methacrylic acid made possible the formation of a traveling front at ambient
pressure and temperature gave impetus to FP as a way of synthesizing new materials
[4]. Much interest was generated in discovering new chemical systems capable of
polymerizing frontally. Subsequent experimental work demonstrated the feasibility of
propagating fronts in solutions of thermal free-radical initiators in a variety of high
boiling point monomers—both liquid [4–6] and solid [7,8]. The first mathematical
model was proposed by Goldfeder et al. which addressed several important char-
acteristics of FP such as the speed of the polymerization wave, the final amount of
reacted monomer, and the temperature inside the reaction zone [9]. Subsequent work by
Goldfeder et al. used the same model but this time took into account heat losses [10]. A
more thorough analysis of nonadiabatic FP was conducted by Spade [11] and several
other mathematical studies expanded the scope of polymerization kinetics [12–14].
This gave the mathematical backing to FP experiments where the authors utilized dif-
ferent techniques to affect the morphology and microstructure of the final product as
a way to synthesize materials with specific properties [15,16].

FP is often not useful in real world applications because the monomer/initiator
systems can suffer from a limited pot life, meaning that over a period of time the
systems will polymerize before they can be used. This is called spontaneous poly-
merization (SP). In experiments, this can compete with and sometimes extinguish
FP waves [17]. To be effective, the polymerization system should be almost inert at
room temperature and highly reactive when heated. Typically, an additive is used in
the mixture to increase pot life [17,18]. Another way to extend pot life is by encap-
sulating the initiator. This prevents radicals formed by initiator decomposition from
coming into contact with the monomer molecules. This was done by Pojman et al.
and they observed increases in pot life for different polymerization systems [19].
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They observed dramatic increases in pot life from hours to weeks in some systems and
from a few days to several weeks in other systems. We deduce that microencapsulating
the monomer molecules will also extend pot life. If instead the monomer molecules
are protected by a shell, then free-radicals will be prevented from reacting with the
monomer molecules, thus preventing SP.

In the present work, we formulate a non-adiabatic free-radical frontal polymeriza-
tion model with encapsulated monomer. Experimental and numerical results motivate
us to seek one-dimensional traveling wave solutions to the problem. We then examine
under what conditions the current model simplifies to the standard FP model in the
absence of heat losses. Lastly, we take into account heat losses and derive an extinction
limit to the traveling wave.

2 Mathematical model

The model of thermal free-radical polymerization was first proposed in [9] and studied
in more detail in [11]. FP with microencapsulated monomer involves the following
steps:

1. upon heating, an unstable initiator molecule decomposes (usually a peroxide or a
nitrile) to form “primary” free radicals,

2. the monomer molecules are released from the microcapsule shells when a certain
temperature is attained,

3. once released, the monomer molecules react with the free radicals to initiate a
polymer chain,

4. the polymer chain is lengthened by successive addition of monomer molecules,
5. two polymer radicals are neutralized by combination

Polymerization stops when the initiator is depleted. Some of the assumptions made in
[11] are repeated here for convenience. The phenomenon of free-radical frontal poly-
merization with microencapsulated monomer involves the following five step chem-
ical process:

(1) I
kd→ f × 2Ṙ (initiator decomposition)

(2) Me
kr→ M f (monomer release)

(3) Ṙ + M f
ki→ Ṗ1 (chain initiation)

(4) Ṗn + M f
kp→ Ṗn+1 ( chain propagation)

(5) Ṗn + Ṗm
kt→ P (polymeric radical termination)

where I, Ṙ, Me, M f , Ṗn , and P represent initiator, free radical, microencapsulated
monomer, free monomer, polymer radical with n monomer units, and a neutralized
polymer radical respectively. The assumed mode of termination of two polymer radi-
cals is by combination. This is also true for free radicals formed by the initiator. Due
to their proximity when they appear in the reactant mixture, a non-negligible amount
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of free radicals are terminated by combination. As a result, only a certain amount of
free radicals are available to initiate polymer chains. The fraction of free radicals that
are active compared to the total number of radicals formed by the initiator is called the
efficiency ( f ) [20]. It is an empirical parameter which is determined experimentally.

f = radicals incorporated into polymer

radicals formed by initiator

The inclusion of f in reaction (1) takes into account Ṙ+Ṙ −→ R−R as a side reaction.
The coefficient 2 represents the fact that two radicals are formed by decomposition
of one initiator molecule. The reaction rate parameters have the form of Arrhenius
exponentials

k j = k j (T ) = k0
j exp

(−E j/(RgT )
)
, j = r, d, i, p, t

where Rg is the gas constant, T is the temperature of the mixture and k0
j and E j are the

pre-exponential factor and activation energy respectively of the reaction designated
by j . The subscripts correspond to the five reaction steps – initiator decomposition
d, monomer release r , chain initiation i , chain propagation p, and polymer radical
termination t . The change of the concentrations of the different species with time can
be described by the following kinetic equations:

d Ĩ

dt̃
= −kd Ĩ , (2.1)

d ˜̇R
dt̃

= 2 f kd Ĩ − ki
˜̇RM̃ f , (2.2)

d M̃e

dt̃
= −kr M̃e, (2.3)

d M̃ f

dt̃
= kr M̃e − ki

˜̇RM̃ f − kp
˜̇P M̃ f , (2.4)

d ˜̇P
dt̃

= ki
˜̇RM̃ f − kt

˜̇P2, (2.5)

d P̃

dt̃
= kt

˜̇P2, (2.6)

where Ĩ , ˜̇R, M̃e, M̃ f , ˜̇P , and P̃ represent the concentrations in mol/L of the cor-
responding species. The notation for the polymer radical concentration contains an

implied summation
(

i.e., ˜̇P = ∑
n

˜̇Pn

)
. These equations must be supplemented by the

energy balance in the system, which accounts for thermal diffusion and heat release in
the polymerization process. Reactions (1) and (2) are typically endothermic whereas
reactions (3)–(5) are exothermic. Although all the reactions contribute to the enthalpy
of the system, the heat release due to the chain initiation and chain propagation reac-
tions is most significant [21]. Considering the heat release due to reactions (3) and (4)
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and ignoring all other heats of reaction, the energy balance takes the form of a reaction
diffusion equation

∂T

∂ t̃
= κ

∂2T

∂ x̃2 + q M̃ f (ki
˜̇R + kp

˜̇P) − α̃(T − T0), (2.7)

where κ > 0 is the thermal diffusivity of the mixture, q > 0 is the rise in temperature
induced per unit concentration of reacted monomer, α̃ ≥ 0 is the heat loss parameter,
and T0 is the ambient temperature. We reduce the number of reaction rate parameters

by assuming that ki = kp [11]. Also, by assuming ˜̇R << ˜̇P [11] and introducing

the combined concentration of radicals D̃ ≡ ˜̇R + ˜̇P , we can reduce the number of
equations by summing Eqs. (2.2) and (2.5)

∂ Ĩ

∂ t̃
= −kd Ĩ , (2.8)

∂ D̃

∂ t̃
= 2 f kd Ĩ − kt D̃2, (2.9)

∂ M̃e

∂ t̃
= −kr M̃e, (2.10)

∂ M̃ f

∂ t̃
= kr M̃e − kp D̃M̃ f , (2.11)

∂ P̃

∂ t̃
= kt D̃2, (2.12)

∂T

∂ t̃
= κ

∂2T

∂ x̃2 + qkp M̃ f D̃ − α̃(T − T0). (2.13)

Now that we have an equation describing the total radical concentration with time,
we can use the steady state assumption (SSA) to obtain an approximate solution for
the total radical concentration. It means that the rate of appearance of D̃ is equal to
its rate of disappearance which corresponds to steady state conditions. It mathemati-
cally means that when the system of equations is appropriately nondimensionalized,
the equation for D̃ has a small parameter in front of its time derivative. Setting this
parameter to zero means that we disregard a short transient from the initial state to the
steady state and consider only the outer solution. Setting ∂ D̃/∂ t̃ = 0 we have

D̃ ≈
√

2 f kd Ĩ

kt
.

which upon substitution in Eqs. (2.11) and (2.13), together with Eqs. (2.8) and (2.10)
yields
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∂ Ĩ

∂ t̃
= −kd Ĩ , Ĩ (0) = I0 (2.14)

∂ M̃e

∂ t̃
= −kr M̃e, M̃e(0) = M0 (2.15)

∂ M̃ f

∂ t̃
= kr M̃e − kef f M̃ f

√
Ĩ , M̃ f (0) = 0 (2.16)

∂T

∂ t̃
= κ

∂2T

∂ x̃2 + qkef f M̃ f

√
Ĩ − α̃(T − T0), T (x̃, 0) = T0 (2.17)

where ke f f ≡ kp
√

2 f kd/kt . Since P̃ decouples from Eqns. (2.8)–(2.11) and (2.13),
we can disregard it since we are only concerned with the evolution of the monomer,
the initiator, and the temperature. The boundary conditions will be prescribed later.
We now look to nondimensionalize Eqs. (2.14)–(2.17).

2.1 Nondimensionalization

It is convenient to nondimensionalize Eqs. (2.14)–(2.17) with the following variables

θ = T − Ta

Ta − T0
, Me = M̃e

M0
, M f = M̃ f

M0
,

I = Ĩ

I0
, x = x̃/x∗, t = t̃/t∗,

and the following nondimensional parameters

Zi = Ei (Ta − T0)

RT 2
a

, δ = Ta − T0

Ta
, Ad = kd(Ta)t∗

Ar = kr (Ta)t∗, α = α̃t∗

using the following time and spatial scales respectively

t∗ =
(

kef f (Ta)
√

I0

)−1
, x∗ = √

κt∗.

Here, Ta = T0 + q M0 is the adiabatic reaction temperature. Next, Zi is the Zeldovich
number which can be thought of as the nondimensional activation energy of the corre-
sponding reaction. The subscript i is r for release, d for decomposition, and e = e f f
for polymerization. The resulting nondimensional system of equations is

∂ I

∂t
= −Ade

Zd θ

1+δθ I, I (0) = 1, (2.18)

∂ Me

∂t
= −Ar e

Zr θ
1+δθ Me, Me(0) = 1, (2.19)

∂ M f

∂t
= Ar e

Zr θ
1+δθ Me − e

Zeθ
1+δθ M f

√
I , M f (0) = 0, (2.20)
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Table 1 Values used in paper
k0

d [1/s] 4 × 1012 q [L K/mol] 33

k0
p [L/s mol] 5 × 106 κ [cm2/s] 0.0014

k0
t [L/s mol] 3 × 107 M0 [mol/L] 6

Ed [ kJ/mol] 113 I0 [mol/L] 0.01

E p [ kJ/mol] 20 T0 [K] 300

Et [ kJ/mol] 3 Rg [ kJ/mol K] 0.008315

∂θ

∂t
= ∂2θ

∂x2 + e
Zeθ

1+δθ M f
√

I − α(θ + 1), θ(x, 0) = −1. (2.21)

A typical value for f , and one that is often found in the literature is 0.5 [20]. Since
there are no predetermined values for k0

r , Er , or α̃, the parameters Ar , Zr , and α will
be adjusted. For the remainder of the paper, we will use the parameter values [9] pre-
sented in Table 1 to obtain the numerical results found in the figures. The corresponding
nondimensional parameter values are

Ad = 2.27, Zd = 10.85, Ze = 7.2, and δ = 0.4.

The numerical results were computed using MATLAB’s ode45 differential equation
solver.

2.2 Traveling wave

We now look for polymerization waves traveling along a tube of length �. We introduce
the traveling wave coordinate ξ = x + ut , where u is the speed of the polymerization
wave that has to be found in the course of the solution of the problem. The region
over which the major variations of temperature and species concentrations occur are
typically much smaller than the length of the tube, therefore, on the scale of the
polymerization wave, the tube can be considered infinite. Ahead of the polymeriza-
tion wave where reactions have yet to take place, the initial temperature and species
concentrations are

ξ → −∞ : θ = −1, I = 1, Me = 1, M f = 0

and the final state behind the wave when all the reactions have come to completion

ξ → ∞ : dθ

dξ
= 0.

The system of equation written in the moving coordinate system is

u
d I

dξ
= −kd(θ)I, I (0) = 1, (2.22)
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u
dMe

dξ
= −kr (θ)Me, Me(0) = 1, (2.23)

u
dM f

dξ
= kr (θ)Me − ke(θ)M f

√
I , M f (0) = 0, (2.24)

u
dθ

dξ
= d2θ

dξ2 + ke(θ)M f
√

I − α(θ + 1), θ(0) = θig,
dθ

dξ

∣∣∣
ξ→∞ = 0

(2.25)

where

ki (θ) = Ai exp (Ziθ/(1 + δθ)) for i = d, e, r.

Here, θig is the Arrhenius cut–off temperature. We introduce this temperature because
we assume that below some temperature, reactions do not take place. Also, θ reaches
θig at ξ = 0. Due to the translational invariance of the problem, θ could reach θig at
any point along the ξ -axis, but zero is a natural starting point.

We first consider the adiabatic problem in which case α = 0. Adding Eqs. (2.23),
(2.24), and (2.25) with α = 0 and applying the boundary condition as ξ → −∞, we
obtain the first integral of the system

dθ

dξ
= u(Me + M f + θ). (2.26)

Evaluating (2.26) as ξ → ∞ allows us to express Mb ≡ M f |ξ→∞ in terms of the
temperature inside the reaction zone θb as

Mb = −θb.

This is true because in the adiabatic case, the temperatures in the reaction zone and
at infinity are equal. We have set Me|ξ→∞ equal to zero because the exact solution of
Me is

Me(ξ) = exp

⎛

⎝− 1

u

ξ∫

0

kr [θ(τ )] dτ

⎞

⎠

and kr [θ(τ )] is positive.

3 Separated reactions

One limiting case of thermal FP with microencapsulated monomer is when a sufficient
amount of monomer is released ahead of the reaction zone. The wave then travels as
if the monomer was never initially encapsulated. This corresponds to a regular FP
wave. Therefore, theoretically, the polymerization wave velocity, the final degree of
conversion, and the final temperature of the system should in fact agree with the same
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(a) (b)

Fig. 1 Release reaction rate (r1) and polymerization reaction rate (r2) profiles that are a separated and
b unseparated in space

quantities as those found from the standard FP model [22]. In this section, we consider
under what conditions the FP model with microencapsulated monomer reduces to the
standard FP model. To make comparisons with the standard model, we set α = 0.

If a sufficient amount of monomer is released ahead of the reaction zone, then the
release reaction occurs in a different region than the polymerization reaction. For the
reactions to be considered separated in space, we require that the second point of
inflection ξ1 of the release reaction rate profile be less than the first point of inflection
ξ2 of the polymerization reaction rate profile. Figure 1 illustrates this idea. The equa-
tions for ξ1 and ξ2 are found by calculating the second derivative with respect to ξ of
the first and second terms of the right hand side of Eq. (2.24), respectively and setting
them to zero.

R(ξ) ≡ d2

dξ2

(
kr (θ)Me

)
= 0, R(ξ1) = 0

S(ξ) ≡ d2

dξ2

(
ke(θ)M f

√
I
)

= 0, S(ξ2) = 0

At the point ξ1, we assume that polymerization has not yet begun and therefore, the
amount of monomer is conserved, i.e. Me + M f = 1. This allows us to write R as a
function of θ rather than a function of ξ . This motivates us to look not for a point along
the ξ -axis, but rather the temperature at the point on the ξ -axis. Therefore, instead of
requiring that ξ1 < ξ2, we now require that θ1 < θ2 where θ1,2 = θ(ξ1,2). This is true
because θ(ξ) is non-decreasing. Near θ1,

R(θ) ∼ kr (θ)

(
1

u2 kr (θ) − 3Zr
1 + θ

(1 + δθ)2

)
(3.1)

At the point ξ2, we assume that Me(ξ) has approached its steady state which involves
setting Me(ξ) = 0. We also assume that polymerization has just only begun, there-
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fore, only a small amount of monomer and initiator have been consumed and they are
still approximately at their initial concentrations. Moreover, the activation energy of
decomposition in free-radical polymerization is typically much larger than the activa-
tion energies of the propagation and termination reactions and thus govern the kinetics
of the polymerization process. As a result, Zd > Ze which implies that kd(θ) < ke(θ)

for θ not too close to zero. With this information, we are able to write S as a function
of θ . Near the point θ2,

S(θ) ∼ Zeu2 1 + θ

(1 + δθ)2

(
Zeu2 1 + θ

(1 + δθ)2 − ke(θ)

(
3 + 1

1 + θ

))
. (3.2)

By requiring that θ1 < θ2 where θ1 and θ2 are the roots of Eqs. (3.1) and (3.2), respec-
tively, we are able to establish a lower bound on Ar

Ar > 3u2
0 Zr exp

(
θ2(1 − 2δ − Zr )

1 + δθ2

)
(3.3)

where θ2 is given approximately by setting S(θ) to zero, taking the logarithm, using
a two–term Taylor expansion for θ small, and solving. If Ar satisfies (3.3), then the
reactions are separate and the model simplifies to the standard FP model. That being
the case, we can use the velocity formula [22] which applies to a regular FP wave.

ũ2 = κk0
d RgT 2

b

2q M0 Ed
exp

(
j0 − Ed

RgTb

) (∫ j0

0

es − 1

s
ds

)−1

, u0 = t∗
x∗

ũ (3.4)

where

j0(Tb) ≡ 2
√

I0k0
e f f

k0
d

exp

(
Ed − Eef f

RgTb

)
,

and Tb is determined by the equation

Tb = T0 + q M0

(
1 − e− j0(Tb)

)
. (3.5)

This is why we replaced u in (3.3) with u0. To test the accuracy of the restriction
imposed on Ar , we compared numerical results with inequality (3.3) as shown in
Fig. 2. There appears to be very good agreement between the results. As Zr increases,
Ar must increase exponentially fast. This is not surprising. As Zr gets large, the release
reaction zone shrinks to an interface. This can be seen by looking at the solution of
Me(θ) for Zr large,

Me(θ) = exp

(
−kr (θ)(1 + δθ)2

Zr u2(1 + θ)

)
, Zr → ∞
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Fig. 2 Inequality (3.3) gives a region in the (Zr , Ar )-plane. For Ar above the dotted line/boxes, the release
reaction occurs ahead of the polymerization reaction

which is found by using Laplace’s method for integrals. This has the effect of moving
the point of inflection of the reaction rate curve r1 (see Fig. 1) to the right where r1 is
near zero. This in effect makes it more difficult to separate the two regions.

4 Heat losses

We now study FP with microencapsulated monomer in the presence of heat losses. The
existence of the traveling wave will depend on the parameter α. If the heat loss level is
too high for a given amount of available monomer, the wave will be extinguished. We
assume that the release reaction rate kr (θ) is temperature independent and attempt to
derive an analytical expression for the extinction limit. The extinction limit αcr is the
threshold value in which for α > αcr , no traveling wave solutions exist.

The monomer is released into the mixture once the temperature reaches θig . Since
the monomer is sequestered from the initiator, if θig is too high, the microcapsules
will not release the monomer upon heating and polymerization will not occur. In order
for this type of FP to work, the microcapsules must release the monomer below the
temperature in the reaction zone.

The structure of the wave is as follows. There are two regions to be studied.

Region 1: −∞ < ξ < 0 The temperature is too low for reactions to begin. At ξ = 0,
θig is reached and the monomer is released at a temperature independent rate Ar Me.

Region 2: 0 ≤ ξ < L The monomer is being released. Polymerization and decom-
position reactions occur at ξ = L where the point L is the location of the reaction
zone.
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We assume that the reaction zone shrinks to an interface at an unknown point L . This
behavior occurs if Zd is sufficiently large. We conclude that ahead of the reaction
zone, for ξ < L , neither decomposition nor polymerization reactions have begun. In
region 1, the temperature satisfies the following boundary value problem

d2θ

dξ2 − u
dθ

dξ
− α(θ + 1) = 0, θ(−∞) = −1, θ(0) = θig (4.1)

yielding

θ(ξ) = −1 + (1 + θig)e
µξ , (4.2)

where µ = u
(
1 + √

1 + 4β
)
/2 and β = α/u2. Also in this region,

I (ξ) = 1, Me(ξ) = 1, M f (ξ) = 0.

In region 2, the temperature Eq. (4.2) still holds true since polymerization has not yet
begun. Here too I (ξ) = 1, but Me and M f are no longer constant. They satisfy the
equations

d Me

dξ
= − Ar

u
Me,

d M f

dξ
= Ar

u
Me (4.3)

with the boundary conditions Me(0) = 1 and M f (0) = 0 so that

M f (ξ) = 1 − e− Ar
u ξ , Me(ξ) = e− Ar

u ξ

At the point L:

θ(L) ≡ θL = −1 + (1 + θig)e
µL , (4.4)

M f (L) ≡ ML = 1 − e− Ar
u L . (4.5)

From Eq. (3.4), we are given the velocity of the wave as a function of the temperature
Tb inside the reaction zone. After nondimensionalizing and using θL instead of θb as
the reaction zone temperature [23], we get

u2 = kd(θL)(1 + δθL)2

2Zd ML
f ( j0), (4.6)

where

f ( j0) = e j0

⎛

⎜
⎝

j0∫

0

es − 1

s
ds

⎞

⎟
⎠

−1

, j0 ≡ 2
ke(θL)

kd(θL)
.
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By analyzing the equations in the reaction zone (for a more complete analysis of these
equations see [22]),

Mb = MLe− j0 . (4.7)

The jump in the temperature gradient across the reaction zone is [22]

dθ

dξ

∣∣∣
ξ=L+ − dθ

dξ

∣∣∣
ξ=L− = −u(ML − Mb).

Assuming that dθ
dξ

∣∣
ξ=L+ is negligible as is the case with normal FP [22,23], the above

equation together with (4.2) yields

µ(1 + θig)e
µL = u(ML − Mb). (4.8)

From Eq. (4.4)

(1 + θig)e
µL = (1 + θL)

so that Eq. (4.8) becomes

µ(1 + θL) = u(ML − Mb). (4.9)

Five equations have been derived for the five unknown quantities L , θL , Mb, ML , and
u. They are repeated here for convenience.

Mb = MLe− j0 (1)

ML = 1 − e− Ar
u L (2)

θL = −1 + (1 + θig)e
µL (3)

u2 = kd(θL)(1 + δθL)2

2Zd ML
f ( j0) (4)

µ(1 + θL) = u(ML − Mb) (5)

Using Mb and ML from Eqs. (1) and (4), respectively in Eq. (5), we obtain

1 + √
1 + 4β = kd(θL)(1 + δθL)2 f ( j0)(1 − e− j0)

Zdu2(1 + θL)
. (4.10)

Substitution of eL from Eq. (3) into Eq. (2) yields

(
1 + θig

1 + θL

) Ar
µu = 1 − ML . (4.11)
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Taking the natural logarithm, we get

Ar

µu
ln

(
1 + θig

1 + θL

)
= ln (1 − ML) ∼ −ML − 1

2
M2

L + O
(

M3
L

)
. (4.12)

Using only the leading order term of the expansion where ML is taken from Eq. (4),
we get

1 + √
1 + 4β = −

4Zd Ar ln
(

1+θig
1+θL

)

kd(θL)(1 + δθL)2 f ( j0)
. (4.13)

Setting Eqs. (4.10) and (4.13) equal to one another gives us the velocity of the wave
as a function of θL .

u2 = −k2
d(θL) (1 + δθL)4 f 2( j0)(1 − e− j0)

4Ar Z2
d ln

(
1+θ ig
1+θL

)
(1 + θL)

To derive the equation for α as a function of θL , the O(M2
L) is kept in Eq. (4.12).

Solving directly, we obtain

α = u2 B (1 + B)

where

B ≡ −
2Ar Zd ln

(
1+θig
1+θL

) (
1 − e− j0

)

Ar Zd ln
(

1+θig
1+θL

)
(1 + θL) − kd(θL) (1 + δθL)2 f ( j0)

(
1 − e− j0

) .

Both α and u are parametric equations with θL as the parameter. The parametric curve
is given by the solid line shown in Fig. 3. The extinction limit is given by the maximum
value of α. In Fig. 3, the analytical results are shown on the top while the numeri-
cal results are shown on the bottom for Ar = 0.001 and Ar = 0.01. There is good
agreement between these two values. The differences in velocity are caused by an
inaccuracy in the analysis of the standard FP model. This however, does not cause an
inaccuracy in the extinction limits. Without performing a linear stability analysis, we
can deduce that the lower branch of the curve where du/dα > 0 in the (α, u)−plane
is unstable. This can be justified physically. Increasing the amount of heat lost in the
system increases the velocity of the wave. The results shown in Fig. 3 can be explained
physically. When Ar is very small, there is less available monomer to participate in
polymerization reactions and therefore, less heat is released due to the exothermicity
of reactions (3) and (4). As a result, the wave is not very resistant against extinction
and a small amount of heat lost can extinguish the wave. The opposite is also true.
When Ar increases, there is more available monomer, more heat is released, and the
wave becomes more resistant to extinction. As a result, a larger amount of heat lost (a
greater value for α) is required to extinguish the wave. It is reasonable to conclude that
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Fig. 3 Analytical (top) and numerical (bottom) extinction limits of the wave for Ar = 0.001 and
Ar = 0.01. For Ar = 0.001, the analytical and numerical extinction limits are αcr ≈ 0.00046 and
αcr ≈ 0.00046, respectively while for Ar = 0.01, the analytical and numerical extinction limits are
αcr ≈ 0.0017 and αcr ≈ 0.00167, respectively

as Ar increases even further, the extinction limit will remain the same since essentially
the same amount of monomer is present.

5 Conclusion

The goal of encapsulating the monomer in free–radical frontal polymerization exper-
iments is to extend the pot life of the system thus preventing SP. SP can interfere with
and even prevent normal FP. To be effective, the polymerization system should be
almost inert at low temperatures and highly reactive when heated. This is achieved
through microencapsulation. Microencapsulation works because free radicals formed
by initiator decomposition cannot react with encapsulated monomer molecules.

The starting point of the formulation of the standard model for FP was given by
reactions (1), and (3)–(5). We then modeled the monomer release as a first order reac-
tion thereby introducing a new element, reaction (2), into the chemical equations. We
considered two cases—one where reaction (2) is temperature dependent and another
when it is temperature independent. For the temperature dependent case, we consid-
ered the conditions in which the model in Sect. 2 reduced to the standard FP model.
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We found that if the release reaction zone and the polymerization reaction zone were
sufficiently separated in space, the model would reduce. This happens if Ar increases

like O
(

Zr eZr
)

.

In Sect. 4, we took reaction (2) to be temperature independent and were able to
derive analytically an extinction limit for the traveling wave. This was done by means
of an asymptotic analysis of the reaction zone in the limit as the reaction zone shrinks
to an interface. The issue of heat losses is important since an insufficient amount of
monomer available to participate in polymerization reactions may result in a chemical
process so slow that heat losses will extinguish the wave. The capsule shells can also
act as a filler and remove heat from the reaction front resulting in extinction.
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